p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.100D4, C4.5(C22×Q8), (C2×M4(2))⋊8C4, C4.49(C23×C4), C8.13(C22×C4), C2.D8⋊63C22, C4.Q8⋊43C22, (C22×C4).65Q8, C4⋊C4.350C23, C23.32(C4⋊C4), M4(2)⋊15(C2×C4), (C2×C8).244C23, (C2×C4).187C24, C23.379(C2×D4), (C22×C4).785D4, C4○(M4(2)⋊C4), M4(2)⋊C4⋊45C2, C2.2(D8⋊C22), C23.25D4⋊20C2, (C22×C8).243C22, (C23×C4).519C22, (C22×C4).906C23, C22.134(C22×D4), (C22×M4(2)).4C2, C42⋊C2.287C22, (C2×M4(2)).257C22, (C2×C8)⋊8(C2×C4), C4.66(C2×C4⋊C4), (C2×C4).62(C4⋊C4), C22.37(C2×C4⋊C4), C2.26(C22×C4⋊C4), (C2×C4).142(C2×Q8), (C2×C4).1568(C2×D4), (C2×C4⋊C4).905C22, (C2×C4).250(C22×C4), (C22×C4).331(C2×C4), (C2×C42⋊C2).55C2, SmallGroup(128,1643)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.100D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=dc=cd, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >
Subgroups: 364 in 246 conjugacy classes, 172 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C4.Q8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C23×C4, C23.25D4, M4(2)⋊C4, C2×C42⋊C2, C22×M4(2), C24.100D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C23×C4, C22×D4, C22×Q8, C22×C4⋊C4, D8⋊C22, C24.100D4
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 23 27)(2 9 24 30)(3 12 17 25)(4 15 18 28)(5 10 19 31)(6 13 20 26)(7 16 21 29)(8 11 22 32)
G:=sub<Sym(32)| (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,23,27)(2,9,24,30)(3,12,17,25)(4,15,18,28)(5,10,19,31)(6,13,20,26)(7,16,21,29)(8,11,22,32)>;
G:=Group( (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,23,27)(2,9,24,30)(3,12,17,25)(4,15,18,28)(5,10,19,31)(6,13,20,26)(7,16,21,29)(8,11,22,32) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,23,27),(2,9,24,30),(3,12,17,25),(4,15,18,28),(5,10,19,31),(6,13,20,26),(7,16,21,29),(8,11,22,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4Z | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | D4 | D8⋊C22 |
kernel | C24.100D4 | C23.25D4 | M4(2)⋊C4 | C2×C42⋊C2 | C22×M4(2) | C2×M4(2) | C22×C4 | C22×C4 | C24 | C2 |
# reps | 1 | 4 | 8 | 2 | 1 | 16 | 3 | 4 | 1 | 4 |
Matrix representation of C24.100D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
9 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 |
0 | 0 | 6 | 16 | 0 | 13 |
0 | 0 | 1 | 1 | 16 | 0 |
4 | 13 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 8 |
0 | 0 | 7 | 0 | 16 | 13 |
0 | 0 | 11 | 1 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 13 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,16,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,16,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,9,0,0,0,0,0,4,0,0,0,0,0,0,16,11,6,1,0,0,15,1,16,1,0,0,0,0,0,16,0,0,0,0,13,0],[4,0,0,0,0,0,13,13,0,0,0,0,0,0,4,7,11,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,8,13,4,13] >;
C24.100D4 in GAP, Magma, Sage, TeX
C_2^4._{100}D_4
% in TeX
G:=Group("C2^4.100D4");
// GroupNames label
G:=SmallGroup(128,1643);
// by ID
G=gap.SmallGroup(128,1643);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,723,248,2804,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations